
First Year Engineering
Module: Analysis 1 Semester 1

Tutorial exercises set 2: Analysis 1

Exercise 01:
For each of the following sequences, give the first five terms:
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(a)
{2n− 1

3n+ 2

}
(b)

{1− (−1)n

n3

}
(c)

{ (−1)n−1

2 · 4 · 6 . . . 2n

}
(d)
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2
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8
+ · · ·+ 1

2n

}
Exercise 02:
The general term of a sequence is un = 3n−1

4n+5 where. (1) Give the terms of this sequence in decimal form
where, n = 1, n = 5, n = 10, n = 100, n = 1000 and n = 100000. Make a guess of lim

n→+∞
un. (2) Using the

definition of limit to verify the guess in the preceding question.
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Exercise 03:
Using the definition of a sequence, show that:

:
	
à


@ 	áëQK. ,

�
éJ
ËA

�
J
�
JÓ

�
éK
Aî

	
E

	
­K
Qª

�
K

	
­K
Qª

�
K ÈAÒª

�
J�AK.

(1) lim
n→+∞

3n− 1

2n+ 3
=

3

2
(2) lim

n→+∞

(−1)n

2n
= 0 (3) lim

n→+∞

2 ln(1 + n)

lnn
= 0

(4) lim
n→+∞

3n = +∞ (5) lim
n→+∞

−5n2 − 3

4n
= −∞ (6) lim

n→+∞
ln(lnn) = +∞

Exercise 04:
(un)n∈N is an increasing sequence; (vn) is the sequence defined for all n ∈ N∗ by vn = u1+u2+···+un

n .
Demonstrate that the sequence (vn).
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Exercise 05:
1. Prove that if lim

n→+∞
un exists, it is unique. ( �
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2. Prove that a convergent sequence is bounded. ( �èXðYm× 	
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3. If lim
n→∞

un = A and lim
n→∞

vn = B, prove that lim
n→∞

(un + vn) = A+B.
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4. If lim
n→∞

un = A and lim
n→∞

vn = B, prove that lim
n→∞

(un · vn) = A ·B.
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5. If lim
n→∞

un = A and lim
n→∞

vn = B ̸= 0, prove that lim
n→∞
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B and lim
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vn
= A

B .
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Exercise 06:
Using theorems on limits, find each of the following
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(a) lim
n→+∞

3n2 − 5n

5n2 + 2n− 6
(b) lim

n→+∞
(
√
n+ 1−

√
n) (c) lim

n→+∞

1 + 2 · 10n

5 + 3 · 10n

(d) lim
n→+∞

cos(2n3 − 5)

3n3 + 2n2 + 1
(e) lim

n→+∞

e2n − en + 1

2en + 3
(f) lim

n→+∞
nae−bn

Exercise 07:
1. Using the principle of bounding a sequence, demonstrate that the sequence (Un)n∈N converges to a

limit l, determining it in each case:
ú
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(a) Un =

n∑
k=1

n

n5 + k
(b) Un =

n∑
k=1

1√
n3 + k

(c) Un =
[n

1
3 ]

n
,where n ∈ N∗ and [.] denots the floor function

2. Let Un =
∑n

k=1
1

2+| cos k|
√
k
, demonstrate that lim

n→+∞
Un = +∞.
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Exercise 08:
Consider the sequence (Un)n∈N defined by: U0 = 0, Un+1 =

√
Un + 2, ∀n ∈ N

U0 = 0, Un+1 =
√
Un + 2, ∀n ∈ N �K.
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3. Consider the sequence (Vn)n∈N defined by Vn = 2− Un for all n ∈ N.
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(b) Prove that, for every natural number n, Vn+1
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(c) Using a proof by induction, demonstrate that Vn ≤
(

1
2

)n−1

for all n ∈ N∗.
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(d) Deduce the limit of the sequence (Vn)n∈N, and then the limit of (Un)n∈N.
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Exercise 09:
Consider the sequence (Un)n∈N, defined by:(�K.
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Un+1 = Une
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1. Show that Un > 0, ∀n ∈ N.
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2. Deduce the monotonicity of (Un)n∈N.
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3. Deduce that (Un)n∈N is convergent, then calculate its limit.
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4. Let Sn =
∑n

k=0 Uk, demonstrate that Un+1 = e−Sn for all n ∈ N.
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5. Conclude that as n approaches infinity, lim
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Sn = +∞.
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Exercise 10:
Consider the sequence (Un)n∈N defined by: (�K.
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U0 = 0

Un+1 = 7Un+4
3Un+3 , ∀n ∈ N

1. Show that 0 ≤ Un ≤ 2 for all n ∈ N.
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2. Study the monotonicity of (Un) for n ∈ N.
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3. Deduce that (Un) is convergent and calculate its limit.
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4. Let E = {Un/n ∈ N}; determine supE and inf E.
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Exercise 11:
Two real sequences (Un)n∈N∗ and (Vn)n∈N∗ are defined as follows:
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U1 = 1

Un+1 = Un+2Vn

3 , ∀n ∈ N∗ and

{
V1 = 12

Vn+1 = Un+3Vn

4 , ∀n ∈ N∗

1. Let Wn = Vn −Un for all n ∈ N∗. Express the sequence (Wn)n∈N∗ in terms of n and then calculate its
limit.
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2. Show that the sequences (Un)n∈N∗ and (Vn)n∈N∗ are adjacent.
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Exercise 12:
Using the Cauchy criterion, demonstrate that the sequence (Un)n∈N∗ is convergent and that the sequence
(Vn)n∈N,n≥2 is divergent.
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1. Un =
∑n

k=0
sin(k)
2k

, for all n ∈ N∗.

2. Vn =
∑n

k=2
1

ln(k) , for all n ≥ 2.
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