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’ Tutorial exercises set 2: Analysis 1 ‘

Exercise 01:

For each of the following sequences, give the first five terms:
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Exercise 02:

The general term of a sequence is u,, = ZZI; where. (1) Give the terms of this sequence in decimal form

where, n =1, n =15, n =10, n = 100, n = 1000 and n = 100000. Make a guess of lirf Un. (2) Using the
n——+0o0o

definition of limit to verify the guess in the preceding question.
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Exercise 03:

Using the definition of a sequence, show that:
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Exercise 04:

urtust-tuy

(un)nen Is an increasing sequence; (v,) is the sequence defined for all n € N* by v, = T

Demonstrate that the sequence (v,,).
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Exercise 05:

L. Prove that if lim w, exists, it is unique. ( 8a>g L 852 g0 lim u, LU oo 13 ol )

n—-+oo n—-+4oo
2. Prove that a convergent sequence is bounded. (83542 (o7 4 et &le 51 ol oa )

3. If lim u,, = A and lim v, = B, prove that hm (un +v,)=A+ B.
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4. If lim u, = A and lim v, = B, prove that lim (u, -v,) = A" B.
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5. If lim w, = A and hm v, = B # 0, prove that lim U— = § and lim 7= = %.
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Exercise 06:
Using theorems on limits, find each of the following
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Exercise 07:

1. Using the principle of bounding a sequence, demonstrate that the sequence (U, ),en converges to a
limit [, determining it in each case:
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,where n € N* and [.] denots the floor function

2. Let U, =Y 7_, W’ demonstrate that lim U, = +oo.
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Exercise 08:

Consider the sequence (U, )nen defined by: Uy =0, Upy1 = VU, +2, VneN

Up=0, Upp1 =VU, +2, VneN _ &l (Up)nen W) _ntw

1. Show that 0 < U, <2 foralln € N. (ne N  Jal 50 0 < Up <2 0l on)

2. Deduce the monotonicity of (Up)nen- ((

3. Consider the sequence (V,)nen defined by V,, =2 — U, for all n € N,
neN K Jol o Vo =2-U 4 &me (Vi)nen Qdl

(a) Determine the sign of (V;,)nen. (Vi)nen 8,3 ins)

(b) Prove that, for every natural number n, 2L <
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1
(¢) Using a proof by induction, demonstrate that V,, < (%) for all n € N*.
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(d) Deduce the limit of the sequence (V,)nen, and then the limit of (Up)nen.
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Exercise 09:

Consider the sequence (Up)nen, defined by:(= & e ¢ (Uy)pen W] _ata)

Up =1
Unsr = Upe~Un, Yn €N

1. Show that U,, > 0, Vn € N.
Up>0, VneN &l v 1

2. Deduce the monotonicity of (Up)nen-

\V]

3. Deduce that (U, )nen is convergent, then calculate its limit.
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4. Let S, = ZZ:O Uy, demonstrate that U, = e~ for all n € N.
.neN fJo‘ Na Un+1 = ¢ 5n u‘ A SWZZZ:OUIC kJ'{'J 4

5. Conclude that as n approaches infinity, lim S, = +o0.
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Exercise 10:

Consider the sequence (Up,)nen defined by: (o & = (Un)nen ! o)

Up=0
nt4
Unt1 = 55255, VneN

1. Show that 0 < U,, <2 for all n € N.
neN ol w 0<U, <2 ol O

[\

. Study the monotonicity of (U,,) for n € N.
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.neN JD_;!QA(UH) LU, JJ;\.

3. Deduce that (U,,) is convergent and calculate its limit.

w
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. Let E = {U,,/n € N}; determine sup E and inf E.
.infE gsupE (s ¢ E={U,/neN} S 4
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Exercise 11:

Two real sequences (Uy )nen+ and (V,,)nen+ are defined as follows:

: flST O e ¢ (Vi)nere 3 (Un)nen- Olids ol

U1 =1 a d V1 =12
11
Unpr = %222 Yn e N* Voyr = &3 vp e N*

1. Let W,, =V, — U, for all n € N*. Express the sequence (W, )nen+ in terms of n and then calculate its
limit.
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2. Show that the sequences (U, )nen+ and (V,,)nen+ are adjacent.
UUJjL’W" (Vn)nEN* b (Un)nEN* Uuu‘ U‘ U.\.J 2

Exercise 12:

Using the Cauchy criterion, demonstrate that the sequence (U, )nen+ is convergent and that the sequence
(Vi)nen,n>2 is divergent.

Baslie (Va)nennza WL 01 5 &G (Un)nene WU 0 Oy ¢ 855 Jlme Jlamid

LU, =31, sinh) for all n € N*.
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2. Vou=>1, ﬁ, for all n > 2.

Page 4





