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Formulaire de trigonométrie  
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II – Relations entre cos, sin et tan     x  ℝ, 2 2sin cos 1x x            
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III – Angles associés           Une lecture efficace du cercle trigonométrique permet de retrouver les relations suivantes : 
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IV – Equations trigonométriques : 
 

 
cos U = cos V   ⇔  ( )U ≡ V [2]  ou  U ≡ – V [2]  
 

sin U = sin V  ⇔  ( )U ≡ V [2]  ou  U ≡  – V [2]  
 

tan U = tan V  ⇔  U ≡ V [] 
                                         

 
V – Formules d’addition et de duplication 
 
 

Formules d’addition. 
     

 

 (a, b)   ℝ2,     cos(a + b) = cos a cos b – sin a sin b 
cos(a – b) = cos a cos b + sin a sin b  
sin(a + b) = sin a cos b + sin b cos a  
sin(a – b) = sin a cos b –  sin b cos a 

Lorsque tan (a + b) existe, 

tan(a + b) = tan a  + tan b
1 – tan a tan b 

 

 
Formules de duplication.     On en déduit :  
 a  ℝ,    sin(2a) = 2 sin a cos a 

cos(2a) = cos2 a – sin2 a = 2 cos2 a – 1 = 1 – 2 sin2 a 
              a  ℝ,    cos2 a = 12 (1 + cos(2a)) 

sin2 a = 12 (1 – cos(2a)) Lorsque cela a un sens, on a :   tan(2a) = 2 tan a
1 – tan2 a 

 
VI – Formule de Moïvre : 
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VII- Transformation de produit en somme: 

 (a,b)²,  1cos .cos cos( ) cos( )
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VIII- Transformation de somme en produit: 

 (a,b)² cos cos 2cos( ) cos( )
2 2
 

 
a b a ba b  

   sin sin 2cos( )sin( )
2 2
 

 
a b a ba b  

   cos cos 2sin( )sin( )
2 2
 

  
a b a ba b  

   sin sin 2sin( ) cos( )
2 2
 

 
a b a ba b  

IX – Utilisation de l'angle moitié 
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X – Transformation de acosx+bsinx 

On pose Z = a+ib, et ² ² r a b  , on a Z = rei et donc acosx + bsinx = r(coscosx + sinsinx) = rcos(x - ) 

Exemple: 1 1cos sin 2( cos sin ) 2 cos( )
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XI – Linéarisation de cospa.sinqa: 

On utilise les formules d’Euler : cos
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On remplace puis développe en utilisant la formule du binôme, enfin on regroupe les termes pour faire apparaître des cos(ka) et 

sin(ka) grâce aux formules d’Euler. 
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XII – Expression de cos(na) ou sin(na) en fonction de cosa et sina: 

On utilise la formule de Moïvre: (cosa+isina)n = cos(na)+isin(na) 

On développe le membre de gauche en utilisant la formule du binôme puis on identifie les parties réelles et imaginaires. 

Exemples: 3cos(3 ) 4cos 3cos a a a  et 3sin(3 ) 4sin 3sin  a a a  


