
First Year Engineering
Module: Analysis 1 Semester 1

Tutorial exercises set 1: Analysis 1

Exercise 01:
A) Show the following inequalities:
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1. |x|+ |y| ≤ |x+ y|+ |x− y|,∀x, y ∈ R

2.
√
x+ y ≤

√
x+

√
y,∀x, y ∈ R+.

3. |
√
x−√

y| ≤
√
|x− y|;∀x, y ∈ R+.

B) Let [x] be the floor function of x;

• find the following: [3.6], [π], [e], [−5.3], [−0.4], [8].
. [3.6], [π], [e], [−5.3], [−0.4], [8] : ú
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• Demonstrate that for all x, y ∈ R:
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1. [x+m] = [x] +m where m ∈ Z
2. x ≤ y ⇒ |x| ≤ |y|.
3. [x] + [y] ≤ [x+ y] ≤ [x] + [y] + 1.

Exercise 02:
A) Show that:
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1. The sum of a rational number and an irrational number is an irrational number.
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2.
√
2 /∈ Q.

B) Let a ∈ [1,∞[ simplify x =
√

a+ 2
√
a− 1 +

√
a− 2

√
a− 1.

. x =
√

a+ 2
√
a− 1 +

√
a− 2

√
a− 1 ¡��. a ∈ [1,∞[ 	áºJ
Ë

Exercise 03:
Consider A as a subset of R equipped with the usual order. Determine, for each of the following sets: the
set of upper bounds Maj(A), the set of lower bounds Min(A), the superemum sup(A), the infimum inf(A),
the smallest element min(A), and the largest element max(A).
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1. A = [−α, α], [−α, α[, ]− α, α[ (where α > 0), E = R.

2. A = {x ∈ R/x2 < 2}, E = R.

3. A = {1− 1
n/n ∈ N∗}, E = R.

Exercise 04:
Let A be a non-empty and bounded subset of R. We denote B = {|x− y|; (x, y ∈ A2)}.

1. Justify that B is bounded above.

2. We denote sup(B) as the supremum of the set B, show that sup(B) = sup(A)− inf(A).

. B = {|x− y|; (x, y ∈ A2)} 	QÓQ
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. sup(B) = sup(A)− inf(A) 	
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Exercise 05:
In notation, PB(R) represents the set of bounded subsets of R. Show that for all A,B ∈ PB(R).
: PB(R) �Ë
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1. (a) sup(A ∪B) = max(sup(A), sup(B)),
(b)inf(A ∪B) = min(inf A, inf B),

2. if A ∩B ̸= ∅ then:
(a)sup(A ∩B) ≤ min(supA, supB),
(b) inf(A ∩B) ≥ max(inf A, inf B),

3. sup(A+B) = supA+ supB;

4. inf(A+B) = inf A+ inf B where A+B = {x+ y/x ∈ A and y ∈ B}
(a) sup(−A) = − inf A;
(b) inf(−A) = − supA
such that −A = {−x/x ∈ A}.

Exercise 06:
Using the characterization of the supremum and infimum, show that:
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1. supA = 3
2 , inf A = 1 for A = { 3n+1

2n+1 , n ∈ N}.

2. supB = 2, inf B = 0 for B = { 1
n + 1

n2 , n ∈ N∗}.

3. supC = 1, inf C = 0 for C = {e−n, n ∈ N}.

4. supD = −1, infD = −2 for D = { 1
n2 − 2, n ∈ N∗}.

Calculate maxA, minA, maxB, minB, maxC, minC, and maxD, minD if they exist.
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