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’ Tutorial exercises set 0: Analysis 1 ‘

Exercise 01:

A. For each number choose one or more descriptions from the following: (a) integer, (b) negative, (c) rational
number (fraction), (d) real, (e) irrational, (f) decimal, (g) prime.
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B. Which of the following descriptions apply to the expressions in (i) — (x) below?
(a) infinite (b) does not exist (c) negative
(d) zero (e) finite (f) non — zero
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Exercise 02:
Express symbolically:
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1. x is a positive, non-zero, number.
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2. z lies strictly between 1 and 2.
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3. x lies strictly between —1 and 3.
4. x is equal to or greater than —2 and is less than 2.
5. The absolute value of x is less than 2.



Exercise 03:

Put the following over a common denominator:
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Exercise 04:
Classify the following functions as odd, even or neither.
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Exercise 05:

Explain why we do not consider (a) § (b) & as numbers.
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Exercise 06:
Prove that the square of any odd integer is odd.
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Exercise 07:
Prove that there is no rational number whose square is 2.
Exercise 08:

Given the equation agz™ + a12" ! +--- +a, = 0 where ag, a1, ...,a; are integers and ag and a,, # 0. Show
that if the equation is to have a rational root %, then p must divide a,,, and ¢ must divide ag exactly.
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Exercise 09:
Prove that v/2 + v/3 cannot be a rational number.
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Exercise 10:

Prove that between any two rational numbers there is another rational number.
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