
First Year Engineering
Module: Analysis 1 Semester 1

Tutorial exercises set 0: Analysis 1

Exercise 01:
A. For each number choose one or more descriptions from the following: (a) integer, (b) negative, (c) rational
number (fraction), (d) real, (e) irrational, (f) decimal, (g) prime.
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(i) − 2 (ii)
1

3
(iii) 0 (iv) 7 (v)

21

5
(vi) − 3

4

(vii) 0.73 (viii) 11 (ix) 8 (x)
√
2 (xi) − 0.49 (xii) π

B. Which of the following descriptions apply to the expressions in (i) – (x) below?

(a) infinite (b) does not exist (c) negative

(d) zero (e) finite (f) non− zero
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(i) 0× 1 (ii) 0 + 1 (iii)
1

0
(iv) 2− 0 (v) 02

(vi) 0− 1 (vii)
0

0
(viii) 3× 0 +
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0
(ix)

03

0
(x)

2

2

Exercise 02:
Express symbolically:
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1. x is a positive, non-zero, number.
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2. x lies strictly between 1 and 2.
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3. x lies strictly between −1 and 3.
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4. x is equal to or greater than −2 and is less than 2.
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5. The absolute value of x is less than 2.
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Exercise 03:
Put the following over a common denominator:
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(i)
2

x+ 1
− 3

x− 2
(ii)

1

x− 1
+

1

x+ 1
− 1

x+ 2

Exercise 04:
Classify the following functions as odd, even or neither.
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(i) 3x3 − x (ii)
x2

1 + x2
(iii)

2x

x2 − 1
(iv)

x2

x− 1

Exercise 05:
Explain why we do not consider (a) 0

0 (b) 1
0 as numbers.
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Exercise 06:
Prove that the square of any odd integer is odd.
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Exercise 07:
Prove that there is no rational number whose square is 2.
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Exercise 08:
Given the equation a0x

n + a1x
n−1 + · · ·+ an = 0 where a0, a1, . . . , a1 are integers and a0 and an ̸= 0. Show

that if the equation is to have a rational root p
q , then p must divide an, and q must divide a0 exactly.
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Exercise 09:
Prove that

√
2 +

√
3 cannot be a rational number.
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Exercise 10:
Prove that between any two rational numbers there is another rational number.
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