

Tutorial exercises set 0: Analysis 1

Exercise 01:

A. For each number choose one or more descriptions from the following: (a) integer, (b) negative, (c) rational number (fraction), (d) real, (e) irrational, (f) decimal, (g) prime.

من أجل كل عدد إختار وصف أو أكثر مما يلي: (a) سالب، (b) عدد صحيح، (c) عدد ناطق (كسرى) ، (d) حقيقى، (e) أصم، (f) عشري، (g) أولى.

- | | | | | | |
|--------------|--------------------|-----------|----------------|--------------------|---------------------|
| (i) -2 | (ii) $\frac{1}{3}$ | (iii) 0 | (iv) 7 | (v) $\frac{21}{5}$ | (vi) $-\frac{3}{4}$ |
| (vii) 0.73 | (viii) 11 | (ix) 8 | (x) $\sqrt{2}$ | (xi) -0.49 | (xii) π |

B. Which of the following descriptions apply to the expressions in (i) – (x) below?

- | | | |
|--------------|--------------------|----------------|
| (a) infinite | (b) does not exist | (c) negative |
| (d) zero | (e) finite | (f) non – zero |

أى من هذه الأوصاف تتطبق على العبارات من (i) إلى (x) في الأسفل؟ (a) متتية، (b) غير موجودة، (c) سالبة، (d) صفر، (e) متهيّة، (f) غير معروفة.

- | | | | | |
|------------------|---------------------|-----------------------------------|----------------------|-------------------|
| (i) 0×1 | (ii) $0 + 1$ | (iii) $\frac{1}{0}$ | (iv) $2 - 0$ | (v) 0^2 |
| (vi) $0 - 1$ | (vii) $\frac{0}{0}$ | (viii) $3 \times 0 + \frac{3}{0}$ | (ix) $\frac{0^3}{0}$ | (x) $\frac{2}{2}$ |

Exercise 02:

Express symbolically:

عبر بالرموز على:

1. x is a positive, non-zero, number. 1. x عدد موجب غير معدوم.
2. x lies strictly between 1 and 2. 2. x يقع بالضبط بين 1 و 2.
3. x lies strictly between -1 and 3. 3. x يقع بالضبط بين -1 و 3.
4. x is equal to or greater than -2 and is less than 2. 4. x تساوى أو أكبر من -2 و أصغر من 2.
5. The absolute value of x is less than 2. 5. القيمة المطلقة ل x أصغر من 2.

Exercise 03:

Put the following over a common denominator:

ضع مقاماً مشتركاً لما يلي:

$$(i) \frac{2}{x+1} - \frac{3}{x-2}$$

$$(ii) \frac{1}{x-1} + \frac{1}{x+1} - \frac{1}{x+2}$$

Exercise 04:

Classify the following functions as odd, even or neither.

صنف الدوال التالية كفردية، زوجية، أو لا فردية ولا زوجية.

$$(i) 3x^3 - x$$

$$(ii) \frac{x^2}{1+x^2}$$

$$(iii) \frac{2x}{x^2-1}$$

$$(iv) \frac{x^2}{x-1}$$

Exercise 05:

Explain why we do not consider (a) $\frac{0}{0}$ (b) $\frac{1}{0}$ as numbers.

فسر لماذا لا يمكننا اعتبار (a) $\frac{0}{0}$ (b) $\frac{1}{0}$ عددين.

Exercise 06:

Prove that the square of any odd integer is odd.

برهن أن مربع عدد صحيح فردي هو عدد فردي.

Exercise 07:

Prove that there is no rational number whose square is 2.

برهن أنه لا يوجد عدد ناطق مربعه 2.

Exercise 08:

Given the equation $a_0x^n + a_1x^{n-1} + \dots + a_n = 0$ where a_0, a_1, \dots, a_n are integers and a_0 and $a_n \neq 0$. Show that if the equation is to have a rational root $\frac{p}{q}$, then p must divide a_n , and q must divide a_0 exactly.

تعطى المعادلة a_n, \dots, a_1, a_0 حيث $a_0x^n + a_1x^{n-1} + \dots + a_n = 0$ و a_0 و a_n غير معدومان. بين أنه إن كان للمعادلة جذر ناطق $\frac{p}{q}$ ، فإن p يجب أن يقسم a_n ، و q يقسم a_0 تماماً.

Exercise 09:

Prove that $\sqrt{2} + \sqrt{3}$ cannot be a rational number.

برهن أن العدد $\sqrt{2} + \sqrt{3}$ لا يمكن أن يكون ناطقاً.

Exercise 10:

Prove that between any two rational numbers there is another rational number.

برهن أنه بين أي عددين ناطقين هناك عدد ناطق آخر.