

13/05/2025

Final Exam (duration : 1h30')

NB. Any answer out of our lectures will be considered false.

Questions (6 points)

1. The offset in a logical address can be greater than the offset in a physical address. True or false? Explain. **0.5**
2. The page table is unique in an OS. True or false? Explain. **0.5**
3. The process table is unique in an OS. True or false? Explain. **0.5**
4. How to define a starvation (famine) in OS? **0.5**
Give examples for:
 - (a) CPU, and **0.5**
 - (b) Memory. **0.5**

5. The size of logical memory can be greater than physical memory. True or false? Explain. **1**
6. In a single-processor computer, tell which process state possibilities are true and which are false in the table below.

#	Ready	Running	Waiting
1	1	0	0
2	0	1	0
3	0	0	4
4	2	1	0
5	3	0	3
6	0	2	1
7	3	3	3
8	0	2	0

0.25 each

Exercise 1. (7 points) Consider the execution of the following processes/jobs on a single-processor machine.

Process/ job	Arrival date	Execution time	Priority	I/O request relative to job start	I/O duration
A	0.0000	5	4	2	1
B	2.0001	4	2	1	3
C	2.0001	2	6	1	2
D	4.0001	4	3	3	3
E	3.0000	3	1	1	1

NB. A small value of priority indicates a higher priority.

1. Considering only the non-grayed part of the table, give the process/job execution diagrams using:
 - (a) the SRT, **1**
 - (b) RR (quantum=1) scheduling, and **1**
 - (c) the preemptive priority scheduling algorithm. **1**
2. Now we consider the whole data of table, draw the execution diagram for a RR scheduling (Quantum=2)? **2.5**
3. For the last case, calculate the following parameters for each process/job:
 - (a) CPU usage, **0.5**
 - (b) response time, and **0.5**
 - (c) waiting time. **0.5**

Exercise 2. (7 points) Let the central memory of a computer be 2^{10} address units. We assume that this memory is managed in multiprogramming in 5 fixed partitions with the k counter technique. The partitions have the following sizes: 50, 200, 40, 300, 150 memory words. The rest of the memory is occupied by the OS. Let consider also $k=2$.

At first, partitions are occupied, they are freed at times 4, 0.2, 4.1, 0.5, 2. The processes come to memory following the table below.

Process	Size	Arrival date	Stay time in memory
A	20	2.3	1
B	120	3.5	2
C	35	0	0.6
D	110	4	2
E	40	2.1	4.5
F	290	1	4

1. Draw the memory diagram, knowing that the OS occupies the lower addresses. **0.5**

2. What would be the content of the queue at time 2.4? **3**

3. What is the total amount of internal fragmentation at time 6? **1**

If we manage this memory using variable partitions and the Worst Fit placement strategy.

4. Provide a diagram showing the contents of the memory at time 4? **1.5**

5. What is the amount of external fragmentation at time 4.2? **0.5**

6. Is there internal fragmentation? If so, how size is it? **0.5**