Tableau Comparatif des Commandes pour les Matrices en Python

(NumPy) et R

Opération Python (NumPy) R
Créer une matrice np.array([[1, 2], [3, 411) matrix(c(l, 2, 3, 4), nrow=2)
Matrice nulle np.zeros((2, 2)) matrix(0, nrow=2, ncol=2)

Matrice identité

np.

eye(3)

diag(3)

Matrice remplie de 1

np.

ones((2, 2))

matrix(1l, nrow=2, ncol=2)

Dimensions de la matrice

matrice.shape

dim(matrice)

Transposition

matrice.T

t (matrice)

Addition de matrices

matricel + matrice2

matricel + matrice2

Multiplication élément
par élément

matricel * matrice2

matricel * matrice2

linéaire

Multiplication de np.dot (matricel, matrice2) matricel Y%x*J matrice2
matrices

Inversion de matrice np.linalg.inv(matrice) solve(matrice)
Déterminant np.linalg.det(matrice) det (matrice)

Trace de la matrice np.trace(matrice) sum(diag(matrice))
Résolution de systeme np.linalg.solve(A, b) solve (A, b)

Valeurs propres np.linalg.eig(matrice) eigen(matrice)

Vecteurs propres np.linalg.eig(matrice) [1] eigen(matrice)$vectors
Rang de la matrice np.linalg.matrix_rank(matrice) gr(matrice)$rank

Norme de la matrice np.linalg.norm(matrice) norm(matrice, type="F")
Extraction diagonale np.diag(matrice) diag(matrice)

Matrice diagonale np.diag([1, 2, 31) diag(c(1, 2, 3))
Concaténation verticale np.vstack((matricel, matrice2)) rbind (matricel, matrice2)
Concaténation np.hstack((matricel, matrice2)) cbind(matricel, matrice2)
horizontale

Accéder a un élément

matricel[i, j]

matricel[i, j]

Accéder a une ligne

matricel[i, :]

matriceli,]

Accéder a une colonne

matricel[:, j]

matrice[, j]

Résumé sur les Matrices en Python

1. Représentation des Matrices

En Python, les matrices sont généralement représentées a 'aide de la bibliotheque NumPy, qui fournit
un objet ndarray pour manipuler des tableaux multidimensionnels. Une matrice est un tableau a deux

dimensions.
Exemple :

import numpy as np

matrice = np.array([[1, 2], [3, 4]11)

2. Opérations de Base

e Création : np.array(), np.zeros(), np.ones(), np.eye().

e Addition : matricel + matrice2.

e Multiplication : np.dot(matricel, matrice2) pour la multiplication matricielle, matricel *
matrice2 pour la multiplication élément par élément.

e Transposition : matrice.T.

e Inversion : np.linalg.inv(matrice).

e Déterminant : np.linalg.det (matrice).

3. Fonctions Avancées

e Valeurs propres et vecteurs propres : np.linalg.eig(matrice).
e Résolution de systémes linéaires : np.linalg.solve(A, b).
e Rang de la matrice : np.linalg.matrix _rank(matrice).

e Norme : np.linalg.norm(matrice).

4. Manipulation des Matrices
e Accéder aux éléments : matricel[i, j], matricel[i, :] (ligne), matrice[:, j] (colonne).
¢ Concaténation : np.vstack() (verticale), np.hstack() (horizontale).

e Extraction diagonale : np.diag(matrice).

5. Applications
Les matrices sont utilisées dans :
e Algebre linéaire : Résolution de systemes d’équations, diagonalisation.
o Apprentissage automatique : Manipulation de données, calcul de distances.

¢ Graphisme et Vision par Ordinateur : Transformations géométriques, traitement d’images.

6. Avantages de NumPy
e Efficacité : NumPy est optimisé pour les calculs numériques.
e Simplicité : Syntaxe concise et intuitive.

e Interopérabilité : Compatible avec d’autres bibliotheques scientifiques comme SciPy, Pandas, et
Matplotlib.

