import matplotlib.pyplot as plt import numpy as np x=np.arange(-1000,1001) x=x*(np.pi/500) print(x) y=np.cos(x) plt.plot(x,y) plt.show() #example import matplotlib.pyplot as plt import numpy as np age=[2,4,6,8,10,12,14,16,18,20] taille=[50,85,114,125,130,138,146,158,160,162] plt.plot(age,taille,color='red',linestyle='--',marker='o',linewidth=2) plt.title('les variations de taille avec age') plt.xlabel('age') plt.ylabel('taille') age=[2,4,6,8,10,12,14,16,18,20] poids=[10,12,20,25,30,38,48,52,54,56] plt.plot(age,poids,marker='*',color='green') plt.legend(['les variations de taille avec age','les variations de poids avec age']) plt.show() #histograms #example import matplotlib.pyplot as plt import numpy as np ages=[10,30,45,30,31,46,12,16,32,23,28,29] bins=[10,20,30,40,50,60] mean=np.mean(ages) print(mean) plt.hist(ages,bins=bins,edgecolor='black') plt.axvline(mean,color='red') plt.title('age distribution') plt.xlabel('age') plt.ylabel('frequancy') plt.show() #subplot import matplotlib.pyplot as plt import numpy as np plt.style.use('seaborn') dev-x=[25,26,27,28,29,30,31,32,33,34,34] dev-y=[38496,42000,46752,49320,53200,56000,62316,64928,67317,68748,73752] fig,ax=plt.subplots(nrows=1,ncols=2) axes[0].set-title('salary for each age') axes[0].set-xlabel('age') axes[0].set-ylabel('salary') axes[0].plot(dev-x,dev-y,color='red',linestyle='--',marker='o',label='mean dev salary') py-dev-x=[25,26,27,28,29,30,31,32,33,34,35] py-dev-y=[23600,65999,45312,97845,32155,32645,20036,10099,78462,42366,16532] axes[1].plot(py-dev-x,py-dev-y,color='black',linewidth=5,label='mean python salary') axes[1].set-title('python salary for each age') axes[1].set-xlabe('age') axes[1].set-ylabel('salary') axes[0].legend() axes[1].legend() plt.tight-layout() plt.show() #boxplot import matplotlib.pyplot as plt import numpy as np x1=np.arange(2,50,20) plt.boxplot(x1)